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ABSTRACT
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1. Introduction

In this presentation we consider abstract inverse problems in a least squares formulation

for parameter dependent partial differential equations. We are interested in approximation

ideas which lead to viable computational techniques for such problems. We pursue our

investigations in the context of the general framework for convergence and stability developed

by Banks and Ito in [BI]. Motivated by questions related to the use of accelerometer data to

estimate parameters in flexible structures, we focus on second order (in time) systems with

sui_cient damping so that the system can be modeled by an analytic semigroup.

We state and prove a new approximation result (a Trotter-Kato type theorem) for ana-

lytic semigroups. This theorem gives conditions under which a family of approximating semi-

groups and all its time derivatives converges to a limit semigroup and all its time derivatives,

respectively. These theoretical results are then stated in terms of simple, readily checked con-

ditions on the sesquitinear forms defining "stillness" and "damping" in the abstract second

order systems.

We discuss several examples which indicate clearly the practical importance of these new

convergence results. In two of the examples presented (the damped, cantilevered Euler-

Bernoulli beam and the c_IR.PL experiment" structure), we can apply the abstract theorem

to substantially sharpen results already found in the research literature. In a third example

involving a two dimensional grid structure, we note that the theory can be applied to obtain

new results for acceleration data convergence in the least squares inverse problems.

2. Abstract Inverse Problems

In this section we formulate a class of inverse problems as abstract least squares optimiza-

tion problems constrained by evolution equations in a Hilbert space and summarize some of

our previous results for such problems [B], [BI], [BK].

We assume we are given a parameter dependent system

iz(t) = A(q)u(t) + F(t,q), 0 < t < T,

=

for states u(t; q) in a Hilbert space H. The parameters q are to be chosen from an admissible

parameter set Q contained in a metric space (Q1, d). We assume throughout that Q is a

compact subset of Q1 (a "regularization" assumption).

We are given observations {z_}, a set of points in the observation space Z, along with an

observation map C : C(0, T; H) --_ Z from the states to the observations. The points z_ are

observations for Cu(t_; q), 0 < t_ < T, and it is this "data" to which we wish to fit the model



by a best choiceof the parameterq. Formally, the problem can be stated as

Find _/E Q to minimize over Q the

('P) functional J(q)= Ei [Cu(_i; q)- zilz.

The observation operator C is of fundamental importance to the discussions in this pa-

per. For parabolic systems (2.1), a typical example for C arises from pointwise evaluation in

the spatial variables, e.g., Cu(_; q) = {u(_, xj; q)}_=l where Z = R l. For problems involving

structures such as beams or plates, several examples arise in practice. If one takes measure-

ments with a laser vibrometer, then one obtains measurements at specific points in space for

the velocities ut(ti, xi; q) so that the map C is a composite of time differentiation _ followed

by pointwise evaluation. If the measuring devices are accelerometers, one has observations

for the accelerations u,(_i, =i; q) and thus C'is time differentiation (twice) a__-g followed by

pointwise evaluation.

The inverse problems outlined here are generally infinite dimensional in both the states

u(t) E H and the parameters q C Q and, moreover, involve unbounded operators related to

the states (A(q)) and the observations (C). Thus to develop efficient computational methods,

one must make finite dimensional approximations for both the state and parameter spaces,

H and Q, respectively. For the discussions of this paper, we shall restrict our considera-

tions to approximations of the state space. In some cases (where the parameter sets Q are

finite dimensional, either naturally or through some a priori parameterization) no approxi-

mation of the parameter set is necessary. Methods for approximation of Q by sets _M have

been fully discussed elsewhere (see [BK]) and these ideas could readily be incorporated in

our presentation. Since this would add nothing to either the difficulties or their resolution

that are the focus here, to avoid considerable notational tedium we do not consider such

approximation ideas in the discussions below.

Thus, we consider approximate (to be made precise below) state spaces H N C H with

associated approximate states uN(_; q) C H N satisfying the approximate systems

= pNF( , q)
 N(0) = pN ,0(q)

where A N is an approximation to A and pN is the orthogonal projection of H onto H N. The

corresponding approximate inverse problems are given by

Find qN E Q to minimize over Q the

(pN) functionaljN(q)= Ej ICuN( ,;q)- Z lZ.

Of course, there are a number of reasonable ways in which the approximations may be

made to arrive at the problems (7_N). In analyzing different methods and their behavior

in the context of inverse problems, a number of questions related to parameter convergence
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arise naturally. For example, given a fixed set of data _, = {z_}, do optimal parameters

¢N of (7"N) converge in some sense to an optimal parameter q for (7")? More generally, one

might also incorporate the continuous dependence of the estimates on the observations in the

concept of method stability [B], [BK]. For this, one denotes by qN(_K) optimal parameters

obtained from (7"N) for observations _K and requiresthat q2C(;_K) _ q($0) in some sense as

N --* co and _g _ ;_0 in Z, where q(;_0) is an optimal parameter for (7') corresponding to

observations _0. These issues are carefully discussed in [B], [BK] where it is shown that for

both parameter convergence and method stability, it suffices to argue that

For arbitrary sequences {qN} in Q converging

(2.3) to q E Q, we have CuN(t;q N) --* Cu(t; q) as N _ oo

for each t E (0, T).

Thus, certain fundamental aspects of approximation in inverse problems can be reduced to

the convergence statement in (2.3) and we shall deal with conditions under which (2.3) can

be guaranteed in the subsequent discussions of this paper.

In [BI], Banks and Ito developed a general framework for convergence and stability which

we summarize here in an extended form to allow treatment of complex valued operators in

complex state spaces (the sesquilinear forms introduced in [BI] were tacitly assumed to be

generated by partial differential equations with real coefficients and the theory developed

there was adequate for such examples). As in [BI], our goal is to isolate properties of the

system (2.1) and the approximation families to insure that (2.3) holds. We state these

properties in terms of conditions on a parameter dependent sesquilinear form arising from

reformulating (2.1) in a weak or variational sense. To this end we consider the system as a

variational equation holding for all ¢ E V :

(2.4) (u(t)'¢) + a(q)(u(t), ¢) =< F(t, q), ¢ >,
u(O) = uo(q).

Here V and H are complex Hilbert spaces with V imbedded densely and continuously in

the pivot space H; i.e. V '--* H = H* _ V*. The sesquilinear form a(q) : V × V _ C is

related to the operator A(q) as described below, <. > is the inner product in H, (., .) is the

duality product (., ")v.,v and equation (2.4) is interpreted in the V* sense. The conditions

on a needed are:

(A) Continuity in q: For q, t/E Q, we have for all ¢, ¢ E V

la(q)(¢, ¢) - a(4)(¢, ¢)1< d(q, q)l¢lvIClv.

(B) V-Coercivity: There exists cl > 0 and some real Ao such that for q E Q, ¢ E V, we have

Re a(q)(¢,¢)+ A0l¢l_ > c11¢1 ,.



(C) Boundedness in q: There exists c2 > 0 such that, for q E Q, ¢, ¢ E V, we have

c l¢lvl¢lv.

Several remarks concerning these conditions are useful. First, we can weaken (A) slightly

(see [BRR]): From (C) it follows that one can define A(q) in £:(V, V*) by a(q)(¢,¢) =

(-A(q)¢, ¢)v..y and then one can rep!ace condition (A) by the requirement that:q ---, A(q)

be continuous from Q to £:(V_ V*).

Moreover, for a : V x V _ C defined using real coefficients, i.e. real scalars, it suffices

to replace (S) by the condition: a(q)(¢,¢) + _o]¢l_r _> c,]¢1_, for all reai valued functions ¢

in V (this is condition (B) as stated in [BI]). To see this, we note that a(q)(¢ + i¢,¢ + i¢)

= a(q)(¢,¢) + a(q)(¢,¢) + i[a(q)(¢,¢) - a(q)(¢,¢)] and thus Re a(q)(¢ + i¢,¢ + i¢) =

a(q)(¢,¢) + a(q)(¢,¢). Therefore, a(q)(¢,¢) + _o1¢1_ >- c11¢]_ for all real valued ¢ in Y

implies immediately that condition (B) above holds.

Under conditions (B) and (C), a defines operators A(q) such that a(q)(¢,¢) =

< -A(q)¢,¢ > for ¢ e dom(A(q)),¢ • Y with dom(A(q)) dense in Y (e.g., see [S]). More-

over, A(q) is a sectorial operator with (AI- A(q))dom(A(q)) = g for all _ with ReA > Ao;

indeed R_,(A(q)) = ()_I- A(q)) -_ exists as a bounded operator on g for all A in the com-

plement of a sector with A0 as a vertex. The operator A(q) generates an analytic semigroup

T(t; q) which can be used in defining mild solutions of the system (2.4) or (2.1); i.e.,

I'(2.5) u(t;q) = T(t;q)uo(q) + T(_- s;q)F(s,q)ds.

Galerkin approximations (e.g., systems (2.2)) for (2.5) can be developed in the context of

sesquilinear forms satisfying conditions (B) and (C). Let H N be a family of finite dimensional

subspaces of H satisfying H N C V and the condition

For each ¢ • V, there exists ¢_N • H N such that

(C1) 1¢ - CNIv _ 0 as N ---*'oo.

(We note that many popular approximation schemes - e.g., linear splines and more generally,

many finite element schemes- satisfy condition (C1).) To define AN(q) : H N _ H _v, we

restrict a(q) to H N × H N and denote this restriction by aN(q). Then a N satisfies conditions

(A), (B), (C) on H N × H N which implies existence of a bounded linear operator AN(q)

on H N satisfying aN(q)(¢,¢) =< --AN(q)¢,¢ > for all ¢,¢ • H N. From (B) and (C) it

follows that the AN(q) are uniformly dissipati_e_sectorial) and generate analytic semigroups

TN(t; q) on H N. Solutions of the systems (2.2) are then given by

(2.6) uN(t; q) = TN(t;q)PNuo(q)+ foTTN(t- s; q)PN f(s, q)ds.

=
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It can then be established that under conditions (A), (B), (C) and (CI), we have

uN(g;qN) ._0u(t;q) in V for arbitrarysequences {qN} with qN -o q in Q. Observe that

this immediately yields (2.3) if the operator C possesses certain boundedness properties.

The focus of this note involves cases where the operator g does not have such boundedness.

The arguments for the convergence uN(t; qN) _ u(t; q) for the situation here (complex

Hilbert spaces 1/', H and complex valued sesquilinear form a) are essentially the same as

those in [BI]. Slight changes in the arguments for Theorem 2.2 of [BI] are necessary to treat

the case of complex valued inner products and sesquilinear forms (essentially one need only

use Re a(., .) and Re < .,. > in some of the inequalities). In these arguments one does not

use directly the analyticity properties of the semigroups T(t; q), TN(t; q). Rather one relies

heavily on resolvent estimates of Tanabe [T] depending on the V-coercivity of a along with a

resolvent convergence form of the Trotter-Kato approximation theorem of linear semigroup

theory (see [BI] for details).

Our interest here is mainly in second order systems of the form

(2.7)
_t(t) + B(q)i_(t) + A(q)u(t) = f(_,,q)

u(O)= _o
_(0)= _,o

where A(q) is a generalized stiffness operator and B(q) is a generalized damping operator.

Again we consider this equation in a weak or variational sense defined via parameter depen-

dent sesquilinear forms in a complex Hilbert space V _ H = H* _ V*. We are given a

stiffness sesquilinear form al(q) : V x V _ C that is symmetric and satisfies the boundedness

condition (C). Then there exists A(q) E £(V, V') such that al(q)(¢,¢) = (A(q)¢,¢)v.,v.

We also have a damping sesquilinear form a'2(q) : V x V -* C which satisfies (C) so that

there exists B(q) E £(V, V') with a2(q)(¢,¢) = (B(q)¢,¢)v.,v. We then reformulate the

system (2.7) and seek solutions u(t) E V satisfying for all ¢ E V

('5(t),¢)+ a2(q)(_(t),¢)+ al(q)(u(t),¢) =< f(t,q), ¢ >
_,(o)= _,o,_,(o)= vo.(2.8)

As is standard practice, we rewrite this in first order vector form on 7"/ = V × H and

= V x V in the coordinates (u, 9). To this end, define a(q) :1_ x _ _ C by

(2.9) ,,(q)((_,,_,),(¢,¢))=- < _,,¢>v +_r,(q)(,_,¢)+,,_(q)(v,¢)

so that (2.8) may be rewritten as

(2.10) (@(t),x) + a(q)(w(t),X) =< F(t,q),x >H
_(o) = (,_o,Vo)



for w(t) = (u(t),_(t)) and X = (¢,¢) in _; with F(t,q) = (O,f(t,q)). Or, if as in the usual

practice, we abuse notation and do not distinguish between row and column vectors, we may

write this in equivalent operator form

@(t) = ,A(q)w(t)'FF(t,q)

,_(0)= (,_o,,_o)

where_(q)(x,_)= (-/(q)x,O with

_(q)= -A(q)-s(q) "

For our treatmenthere(asforthatin [BI])we assume thatat(q)satisfiesconditions

(A),(B),and(C).We furtherassumethat_2(q)satisfiesconditions(A)and(C).Thenthe
strength of the coercivity assumption on a2(q) determines the properties of the semigroup

generated by _4(q). For example, if a2(q) satisfies (B), then _4(q) is strongly );-coercive and

generates an analytic semigroup on 7%. (Actually, ,4(q) is )/q-coercive with )/q = l/q x V_

where _ is V taken with the equivalent inner product al(q)(., .)- see [BI].) In [BI], it is

assumed only that u2 is H-semicoercive: There exists b _> 0 such that for all ¢ E V we have Re

cr(q)(_,_) > bl¢l_/.In thiscase one can argue only that _(q) generates a stronglycontinuous

semigroup on 7-/. The theory for second order systems with this weak damping is developed

in [BI] in order to treat several forms of damping (spatial hysteresis, time hysteresis, bending

rate damping) which are of physical interest and yet do not satisfy the strong V-coercivity

assumption. The convergence theory obtained yields that uN(t; qN) __, U(t; q) in V norm,

_N(g; qN) __, _2(t; q) in H norm whenever qN _4 q,

As opposed to [BI], we wish to consider in this paper the case where crz(q) does satisfy

the strong V-coercivity condition (B) and hence _4(q) is the infinitesimal generator of an

analytic semigroup. We obtain immediately that a(q) of (2.9) is )/-coercive and the first

order theory outlined above can be applied directly to the system (2.10). This yields the

convergence statement in )/- i.e., uN(t;q _v) _ u(t;q) in V, _N(t;qN) --* /_(t;q) in V. A

natural question arises as to whether we can use the analyticity of the semigroups in this case

to obtain stronger results. The next section is devoted to results that yield an affirmative

answer to this question.

3. Analytic Semigroups and Approximation

We first give a general approximation theorem for analytic semigroups that is a general-

ization of the well-known Trotter-Kato theorem [BK].

Theorem 3.1. Suppose we have compIez Hilbert spaces X and X N, N = 1,2..., w/th

X N C X. Let pN : X ---* X N denote the orthogonal projection of X onto X N satisfying

6
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t
=

pN _..} I strongly. Suppose that A N and A are the infinitesimal generators of analytic

semigroups sN(t) and S(t) on X N and X respectively that satisfy the following:

There exists a region _ = _6 = {A 6 C: [arg(A - A0)[ < _ + 6}, where 6 > 0,

such that E U{,_0} C p(A) NY=I p(A N) and

(i) there ezists a constant M independent of N such that

M
[Rx(AN)[ <_

for all A fi _, and N = 1,2,... ;

5i) for some A 6 E and each x 6 X we have Ra(AN)pN_ --* na(A)x.

Then we have

(iii) For each z 6 x, sN(t)PNx -'4 S(t)z uniformly in t on compact

subintervals of [0, c_);

5v) For each z 6 X and integer k >_ 1,(AN)kSN(t)pNz ---* AkS(t)z

uniformly in t on compact subintervals of (0, c_).

Proof. The statement of (iii) under the given conditions is just a variant of the well-known

Trotter-Kato theorem and follows immediately from Theorem II.1.14 of [BK]. To argue result

(iv), we first note the convergence in (ii) for som..._.._geA 6 _ implies that the convergence holds

for all A E ]_. In light of the resolvent bounds of (i), this follows from the identity for

#,A6_

R_,(AN)p N - Ru(A) = [I + (A - #)R_,(AN)pN][Ra(AN)p N -- Ra(A)][I + (A- #)nu(A)]

which is readily estabfished using the standard resolvent identity Ra(A)- R,(A) = (#-

_)Rx(A)Ru(A).

The analyticity of the semigroups sN(t) and S(t) allow us to write for t > 0 (e.g., see

[P])
1 F

AkS(t) = Jr
and

1

(AN)ksN(t)PN = _ fr _%a'Rx(AN)pN d_"

Here F is a positively oriented contour through )_0 lying in _ with arg(_ - A0) = 4-u for

,_ _ _0 where u is fixed in (_+5-s, _+5). The desired convergence results follow immediately

from the inequality

](AN)_sN(t)15Nz- A_S(t)x]

1

_ fr I_l_leX'l [Ra(AN)pNx- na(A)xldA



using the resolvent convergence of (ii) by noting that the integrand in this integral is domi-

nated by an integrable function.

We now return to the second order systems of Section 2- see (2.8), (2.9), (2.10) - and

use Theorem 3.1 to obtain our main convergence results. As before we take 7"/= V x H and

= V × V. Let ?_N = H N x H N and pN be the orthogonal projection of _ onto _N.

Theorem 3.2 Let cq(q) and _2(q) in(2.8) satisfy conditions (,4), (B) and (U) and let

H N C V satisfy condition (CI). Let {qN} be arbitrary in Q with qN __. q. Then we have

(i) The sesquilinear form a(q) given by (2.0) satisfies conditions (A), (B), (C) in the norms of

Y and 7"[ and the operator .A(q) defined via a(q)(x,_)=<-.A(q)x,_ >_t for x E dom(.A(q))

is the infinitesimal generator of an analytic semigroup T(t; q) on 7"[.

(ii) Let .AN(q) denote the operator obtained by restricting a(q) to _Jv × 7.iN and let TN(t; q)

denote the corresponding analytic semigroups on 7"tN. Then we have

(a} For each X E _, 7"Iv(t; q_V)PNx --* T(t; q)x in 7"l uniformly in t

on compact subintervals of [0, cx_);

(b) For each X E 7-( and positive integer k, .AN(qN)kTN(t; qN)PN X _ A(q)kT(t; q)x

in _ uniformly in t on compact subintervals of (0, oo).

E

The proof of this theorem is now rather straightforward. We first note that it is readily
=

shown with routine calculations that ax, a= satisfying (A), (B), (C) in the V and H norms

imply that a satisfies (A), (B), (C) with the norms of Y = V x V and 7"/= U x H. Result

(i) of the theorem thus is established.

For result (ii), we apply Theorem 3.1 with X 7-I = V x g and X _r 7"/N = H N x H N

along with arguments of [BI]. Restricting a(q _v) to 7-/N x _r to obtain the operators A N =

AN(qN), we have that condition (B) is satisfied in 7-/N with the constants uniform in N -

i.e., the uniform sector condition and the uniform resolvent bounds in (i) of Theorem 3.1 are

readily seen to hold. For the resolvent convergence of (ii) we refer to Theorem 2.2 of [BI],

noting that we have all the hypotheses of that theorem holding here in the sense of the ])

and 7-/norms. Hence the same arguments (modified slightly as mentioned in Section 2 above

to account for complex Hilbert spaces Y and _) given for Theorem 2.2 of [BI] can be used

here to establish (ii) of Theorem 3.1. The convergence statements (a) and (b) of Theorem

z



3.2 then follow directly from (iii) and (iv) of Theorem 3.1.

We axe now in a position to use the results of Theorem 3.2 to address the question of

stronger convergence results for us(t; qn) to u(t; q) raised in connection with the observation

operator C in Section 2. We first consider the case of homogeneous systems (i.e., f = 0

in (2.8)) in which case wn(t;q n) = (un(t;qn),_n(t;qn)) = Tn(t;qn)Pn X and w(t;q) =

(u(_;q),_z(_,;q)) = T(_;q)x. For X E dora (.A(q)) we have 6,N(t) - .,4N(qlV)TN(t;qN)PIVx,

fbn(_) = AN(qN)2Tn(t;qn)PNx, etc., while _b(t) = A(q)T(_;q)x, (b(t) = A(q)aT(t,;q)x,

etc. Thus, from statement (b) of Theorem 3.2 we find @N(t; qN) __, _3(t; q) in 7_, which

yields uN(t; qN) _ uu(t; q) in the V norm, uniformly in t on compact subintervals of (0,oo).

Indeed, for allk 1,2 . we obtain °h N . _r o_= .. , (t,q) --,   (t;q)in v.
Since, as we shall see in the next section, many interesting examples involve V C H2(12)

with fl C R x or fl C R 2, and since in this case V imbeds continuously in C(f_), the above

results guarantee pointwise (in t and x) convergence of u_r(q n) and all its time deviatives

to u(q) and its time deviatives, respectively. Thus, observation operators related to laser vi-

brometers (ut) and accelerometers (u.) are included in the convergence and method stability

theory for output least squares inverse problems.

Similar results are available for the nonhomogeneous equation (2.8) (or (2.10)) if one

places appropriate regularity conditions on f. To obtain these, one considers the representa-

tion theorems (mild solutions)

w"(t;¢') = + £ 7"n(t- s; ¢,)pNF(s,q)d 

w(t;q) = T(t;q)wo + f_T(t- s;q)F(s,q)ds

and uses regularity conditions on mild solutions in 7"/= V × H. For example, if f(., q) is

in C'1([0,T], H), one can differentiate once, if f(-,q)is in G2([0, T], H), one can differentiate

twice, etc. (see [P]). Indeed, since we have analytic semigroups, we can weaken the conditions

on f needed for this procedure by considering special regularity theorems for mild solutions

of Cauchy initial value problems in the case of analyticity (e.g., see Chapter 4.3 of [P]). For

example, it suffices to have f(., q) e LI(0, T; H) and locally HSlder continuous in order to

differentiate w N and w once in the above representations.

4. Examples

In this section we present briefly several examples to which the above theory can be

readily applied. In some cases this sharpens the convergence and stability results currently

available in the literature; in other cases it provides new results for the associated inverse

9



problems.

Example 4.1. We consider a cantilevered Euler-Bernoulli beam with Kelvin-Voigt damping

(i.e., stress proportional to a linear combination of the strain and the strain rate). The beam

is assumed fixed at x = 0 and free at x = l, with the transverse displacement at time t and

position x given by u(t, z). Typical observatiOns consist of acceleration u,(t, zj) or velocity

ut(t,_zj) at-_veral locations zj. Balance of forces and moments yield the following system

(we assume the linear mass density p is normalized to unity):

O2u 02 _ O2u 8_u
0t---_ + b-_{m_ + c_xb-W_}= f(t,z) 0 < • < t,

= ?

=(t,0) = _(t,0) = 0,(4.1)

02u 03u
ZI_'_x 2 + CDI_--_].=t = O,

0 - 02u _u
_(EXb-_ _ + c_Ib-W_}],=¢= 0.

The parameters to be estimated in typical examples (see [BWIC], [BFWIC], [Bin]) are the

stiffness and damping coefficients, EI and CDI, respectively. For a parameter set we choose

Q compact in

Q,, = {q = (El, coI) : q E L°°(O,l) x L°°(O,I),EI(x) >_ v > O, CDI(x) >_ _'}.

For the state spaces H and V we take H = H°(0,l), V = H_(0,l) - {¢ e H2(0,l) : ¢(0) =

¢'(0) = 0}. Then in writing the system (4.1) in the form (2.8) we take

al(q)(¢, ¢) =< EID2¢,D_¢ >o

a2(q)(¢,¢) =< cDID2¢,D_¢ >o

where D 2 = o-_ and < .,. >0 is the inner product in H°(0, I) = L_(0,l). For real valued ¢

in V we have at once :

a,(q)(¢, ¢) > vlD2¢[o _> c_[¢[_ ....

which, as we have noted, implies

_e _,(q)(¢,¢) > c11¢1¢

for complex valued ¢ in V. It is equally trivial to argue that conditions (A) and (C) of ::=

Section 2 hold for this a_(q), a2(q). For Galerkin schemes satisfying condition (C1) we thus

have Theorem 3.2 applicable, and hence parameter convergence and method stability hold

1
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for the least squaresproblems (P) and (pN) whenever one formulates these with pointwise

observations of either velocity or acceleration.

Example 4.2 For this example we return to the so-called "RPL experiment" discussed in

some detail in [BGRW]. The focus of our attention is a cantilevered Euler-Bernoulli beam

with a flexible gas hose and thruster nozzle attached to the free end as depicted in Figure

2.2 of [BGRW]. The structure is modeled as a uniform cantilevered beam with Kelvin-Voigt

internal damping and tip mass with a mass-spring-dashpot assembly attached at the tip.

Along with the usual damped Euler-Bernoulli beam equation

_ 0Su

we have the force balance equation at the tip

= 0, 0 < z < i,

" 32u 84u E -83u"
(4.3) Lmr-_ - - CDIoxac3_ " 1-_-_x3l=:t

Ou "t
- cH(_1(t) - -_(,£)) -F kH(y(t) - u(t,£)) + f(t)

and the hose assembly state equation

(4.4) rn,_(t) + cH(y(t) - "_i ( ,l)) + kH(y(t) - u(L t)) = O.

Here p, EI, and cDI are the usual beam parameters whereas rna, represents the tip mass,

mH is the hose mass, kH is the hose stiffness (the "spring" or restoring force constant), CH

is the hose damping coefficient and f(_) represents an externally applied force at the tip

(firing of the tip mounted thrusters). Boundary conditions for the coupled state equations

(4.2) and (4.4) include the tip force balance equation (4.3), the tip moment balance equation

(assuming that the hose assembly has negligible rotational inertia)

. 8_u _u
(4.5) tEl-_-_z_ + CDI-5_--_].:l = O,

and the zero displacement, zero slope conditions at the fixed end m = 0

(4.6) u(t,O) = _-_-_(t,O) = O.

The structure is assumed initially at rest so that initial conditions are given by

=(0, = ) = 0

ii



The parameters to be estimated using accelerometer observations (see [BGRW]) include

q - (mr, El, cDI, mH, cH, kH), which is to he chosen from a compact subset Q c R__.

To write the system (4.2)-(4.6) in weak or variational form, we use the state variable

fi(t) = (y(t),u(t,g),u(t,.)) in the state space H = R 2 x H°(0,l) with inner product
= z := z

< (C,_,¢),(_,#,¢) >.=_ + _+ < ¢,¢ >0.

For the space V we choose V = {(¢*,rl, ¢) 6 H: ¢ 6 H2(O,I), ¢(0) = De(0) = 0,77 = ¢(i)}

with inner product

< (¢, ¢(l), ¢), (A, ¢(l),¢) >v= (¢- ¢(l))(),- ¢(l))+ < D2¢,D2¢ >o.

The stiffness and damping sesquilinear forms are given for $ = (¢, ¢(i), ¢), ¢ = (A, ¢(i), ¢)

in V by

al(q)($,¢) = kH(( -- ¢(l))()_ -- ¢(_)) "4-EI < D2¢,D2¢ >o

a_(q)($,¢) = CH(( -- ¢(l))(A-- ¢(l)) + cDI < D2¢,D2¢ >o.

We also need an operator .hd(q) E £(H) given-by-

This operator can be extended to £(V*) in an obvious manner. Then the system (4.2)-(4.6)

can be written in variational form for the state/t(t) 6 V to satisfy for all ¢ 6 V

(M(q)_,(O, $) + _(q)(,_,(t),_) + _l(q)(,_(O,$) =< F(O,_ >
(4.7)

a(0)= _,(0) = 0,

where F(t) = (0, f(t),0). Since, for mH, mr, p positive, the operator .hd(q) is invertible,

equation (4.7) is obviously equivalent to an equation of the form (2.8). Thus the theory of

Sections 2 and 3 is applicable if al and a2 satisfy the requisite hypotheses. If Q is bounded

below in/_+, it is readily seen that both ai and a2 satisfy conditions (A), (B), and (C). For

example, we see immediately for ¢ = (¢', ¢(i), ¢) 6 V

_2(q)(¢,¢) = c.(C - ¢(t))_+ cDllD2¢l_

> c,{(C- ¢(g))"+ ID_¢10_}= c_l$l_. _

Similar arguments hold for a,(q).

Application of the theory in Sections 2 and 3 substantially sharpens the results given in

[BGRW]. In that paper the main results (see Lemma 3.1) yield

j_0 T ^ N ^(4.8) lu.(t;q N) utt(t;q)lHdt _ 0

12



asN -o oo. The arguments are rather tedious and require the assumption _(q) E H2(0, T; V)

on the limit function. Note also that (4.8) would require continuous time acceleration ob-

servations be used in the least squares criterion.

In contrast, the theory of this paper yields (since H 2 embeds compactly in C) uN(t, z; qN) -o

u(t,z;q), "[.tN(l_,z;q N) _ iz(t,z;q) uniformly in z E [0,l] for each t E [0, T] as well as'

_t_(t; qN) __, _ttt(t;qN) in V for each t, which permits sampled time acceleration observa-

tions. The arguments are simple (given the theory developed above) and do not require the

a priori smoothness assumption on fi(q).

Example 4.3 As a final example, we briefly describe the models for two dimensional grid

structures ("plates with holes") developed and investigated in [1%]and [BR]. We use Love-

Kirchoff plate theory with Kelvin-Voigt damping. The "plate" is rectangular, e.g., on (z, y) E

[0,ll] × [0,_2], with rectangular holes periodically placed to produce a thin planar grid. It is

assumed to be hanging vertically, clamped at the top, with the other three edges free. The

basic equation for transverse displacements w(t, z, y) is given by

h O2W 02 M ® O_.M.V O_M _
0z-----r-+2 0N-----r-=/

where h is the thickness of the plate, the bending moments M x, M _ about the z and y axes,

respectively, are given by

M" EI {O_w 02w-
- z-v 

CDI 03W 03w -

- ;2 +

CDI t93W 03W

1_ +
E I .02w O2w -

M v - + +--
1 - u2t_Ty 2 vo'z_a2}

and the twisting moment is given by

EI . 6q2w 02w . CDI OSw 0 aw
M_v + { 1

vo-i y . 1-P o -- -yot

Here v is Poisson's ratio. For the boundary conditions at the top (clamped) we have the

o,. = 0 (the top corresponds to the z-axis). The plateessential boundary conditions w =

is free on the other outer edges and on the edges of the holes, where the natural boundary

conditions of zero moment and zero shear are required. For example, on a free edge parallel

to the N-axis this results in the conditions

0M.__.._=+ 2 0M'u = O.
M= = O, Oz ON

As shown in [R], [BR], one can readily define the corresponding stiffness and damping

sesquilinear forms trl,a2 on V × V, where V = {¢ E H_(f_) : ¢ = _ = 0 along y = 0}, f/

13



is [0, tl] x [0,12] less the holes, and argue the needed V-coerciveness along with conditions

(A) and (C). In this case, the state space is H =/./o(_). The theory of Sections 3 and 4 can

thus be shown to hold for this example.
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